Keeping You Up On The Lastest

Posts tagged ‘Zettabyte’

Big Data

corporate office2_001

After having been accustomed to terms like MegaByte, GigaByte, and TerraByte, we must now prepare ourselves for a whole new vocabulary, such as PetaByte, ExaByte, and ZettaByte which will be as common as the aforementioned.

Dr Riza Berkan CEO and Board Member of Hakia provides a list of  Mechanisms generating Big Data

  • Data from scientific measurements and experiments (astronomy, physics, genetics, etc.)
  • Peer to peer communication (text messaging, chat lines, digital phone calls)
  • Broadcasting (News, blogs)
  • Social Networking (Facebook, Twitter)
  • Authorship (digital books, magazines, Web pages, images, videos)
  • Administrative (enterprise or government documents, legal and financial records)
  • Business (e-commerce, stock markets, business intelligence, marketing, advertising)
  • Other

Dr Riza Berkan says Big Data can be a blessing and a curse.

He says that although there should be clear boundaries between data segments that belong to specific objectives, this very concept is misleading and can undermine potential opportunities. For example, scientists working on human genome data may improve their analysis if they could take the entire content (publications) on Medline (or Pubmed) and analyze it in conjunction with the human genome data. However, this requires natural language processing (semantic) technology combined with bioinformatics algorithms, which is an unusual coupling at best.  Two different data segments in different formats, when combined, actually define a new “big data”. Now, add to that a 3rd data segment, such as the FBI’s DNA bank, or geneology.com and you’ll see the complications/opportunities can go on and on. This is where the mystery and the excitement resides with the concept of big data.

Super Big Data Software

Dr Riza Berkan asks are we prepared for generating data at colossal volumes? and we should look at this question in two stages: (1) Platform and (2) Analytics “super” Software

Apache Hadoop’s open source software enables the distributed processing of large data sets across clusters of commodity servers, aka cloud computing. IBM’s Platform Symphony is another example of grid management suitable for a variety of distributed computing and big data analytics applications. Oracle, HP, SAP, and Software AG are very much in the game for this $10 billion industry. While these giants are offering variety of solutions for distributed computing platforms, there is still a huge void at the level of Analytics Super Software . Super Software’s main function would be to discover new knowledge which would otherwise be impossible to acquire via manual means says Dr Berkan.

Discovery requires the following functions:

  • Finding associations across information in any format
  • Visualization of associations
  • Search
  • Categorization, compacting, summarization
  • Characterization of new data (where it fits)
  • Alerting
  • Cleaning (deleting unnecessary clogging information

Moreover, Dr Berkan says that” Super Software would be able to identify genetic patterns of a disease from human genome data, supported by clinical results reported in Medline, and further analyzed to unveil mutation possibilities using FBI’s DNA bank of millions of DNA information. One can extend the scope and meaning of top level objectives which is only limited by our imagination.”

Then too, Dr Berkan says big data can also be a curse  if the cleaning (deleting) technologies are not considered as part of the Super Software operation. In his  previous post, “information pollution”, he emphasized the danger of uncontrollable growth of information which is the invisible devil in information age.

credits: Search Engine Journal/SEG

 

Advertisements

Big Data

Big data is measured in terabytes, petabytes, or more. Data becomes “big data” when it  outgrows your current ability to process it, store it, and cope with it efficiently. Storage has become very cheap in the past ten years, allowing loads of data to be collected. However, our ability to actually process the loads of data quickly has not scaled as fast. Traditional tools to analyze and store data — SQL databases, spreadsheets, the Chinese abacus — were not designed to deal with vast data problems. The amount of information in the world is now measured in zettabytes. A zettabyte, which is 1021 bytes (that is 1 followed by twenty-one zeroes), is a big number. Imagine writing three paragraphs describing your favorite movie – that’s about 1 kilobyte. Next, imagine writing three paragraphs for every grain of sand on the earth — that amount of information is in the zettabyte range.

The best tool available today for processing and storing herculean amounts of big data is Hadoop.  Hundreds or thousands of computers are thrown at the big data problem, rather than using single computer.

Hadoop makes data mining, analytics, and processing of big data cheap and fast. Hadoop can take most of your big data problems and unlock the answers, because you can keep all your data, including all of your historical data, and get an answer before your children graduate college.

Apache Hadoop is an open-source project inspired by research of Google.  Hadoop is named after the stuffed toy elephant of the lead programmer’s son. In Hadoop parlance, the group of coordinated computers is called a cluster, and the individual computers in the cluster are called nodes.

Tag Cloud